Integrated Intelligent Energy ›› 2023, Vol. 45 ›› Issue (8): 53-63.doi: 10.3969/j.issn.2097-0706.2023.08.007
• Low-carbon Technical Economy • Previous Articles Next Articles
Received:
2023-05-04
Revised:
2023-06-05
Published:
2023-08-25
Supported by:
CLC Number:
TENG Jialun, LI Hongzhong. Analysis on development and key technologies of integrated intelligent energy in the context of carbon neutrality[J]. Integrated Intelligent Energy, 2023, 45(8): 53-63.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2023.08.007
[1] | 《中国能源发展报告2022》:我国能源绿色低碳转型加快推进[J]. 经济导刊, 2022(7):6. |
[2] | 张士宁, 谭新, 侯方心, 等. 全球碳中和形势盘点与发展指数研究[J]. 全球能源互联网, 2021, 4(3):264-272. |
ZHANG Shining, TAN Xin, HOU Fangxin, et al. Research on global carbon neutrality target and development index[J]. Journal of Global Energy Interconnection, 2021, 4(3):264-272. | |
[3] | 周伏秋, 邓良辰, 冯升波, 等. 综合能源服务发展前景与趋势[J]. 中国能源, 2019, 41(1):4-7,14. |
ZHOU Fuqiu, DENG Liangchen, FENG Shengbo, et al. Prospects and trends of integrated energy services[J]. Energy of China, 2019, 41(1):4-7,14. | |
[4] | 董霜. 综合智慧能源发展现状及关键技术的研究[J]. 中国工程咨询, 2017(4):43-45. |
DONG Shuang. Research on development status and key technologies of integrated smart energy[J]. Chinese Consulting Engineers, 2017(4):43-45. | |
[5] | 曹军威, 孙嘉平. 能源互联网与能源系统[M]. 北京: 中国电力出版社, 2016:53-57. |
[6] | 俞学豪, 袁海山, 叶昀. 综合智慧能源系统及其工程应用[J]. 中国勘察设计, 2021(1):87-91. |
YU Xuehao, YUAN Haishan, YE Yun. Integrated intelligent energy system and its engineering application[J]. China Exploration & Design, 2021(1):87-91. | |
[7] | 王宏, 闫园, 文福拴, 等. 国内外综合能源系统标准现状与展望[J]. 电力科学与技术学报, 2019, 34(3):3-12. |
WANG Hong, YAN Yuan, WEN Fushuan, et al. Current status and prospects of comprehensive energy system standards at home and abroad[J]. Journal of Electric Power Science and Technology, 2019, 34(3):3-12. | |
[8] | 董旭, 袁海山, 叶昀, 等. 园区综合能源系统现状与技术趋势[J]. 能源与环境, 2021(4):16-19. |
DONG Xu, YUAN Haishan, YE Yun, et al. Current status and technological trends of integrated energy systems in industrial parks[J]. Energy and Environment, 2021(4):16-19. | |
[9] |
陆王琳, 陆启亮, 张志洪. 碳中和背景下综合智慧能源发展趋势[J]. 动力工程学报, 2022, 42(1):10-18.
doi: 10.19805/j.cnki.jcspe.2022.01.002 |
LU Wanglin, LU Qiliang, ZHANG Zhihong. Development trend of comprehensive intelligent energy under the background of carbon neutrality[J]. Journal of Power Engineering, 2022, 42(1):10-18. | |
[10] | 朱海东, 郝浩, 郑剑, 等. 基于冷热电多能互补的园区综合能源系统设计[J]. 华电技术, 2021, 43(4):34-38. |
ZHU Haidong, HAO Hao, ZHENG Jian, et al. Design of integrated energy system for parks based on complementation of cold,heat and electricity[J]. Huadian Technology, 2021, 43(4):34-38. | |
[11] | 窦超. 冷热电联供与地源热泵耦合的分布式供能系统研究[D]. 北京: 华北电力大学, 2018. |
DOU Chao. Research on distributed energy supply system coupling combined cooling,heating and power with ground source heat pump[D]. Beijing: North China Electric Power University, 2018. | |
[12] |
YANG Gan, ZHAI Xiaoqiang. Optimization and performance analysis of solar hybrid CCHP systems under different operation strategies[J]. Applied Thermal Engineering, 2018, 133:327-340.
doi: 10.1016/j.applthermaleng.2018.01.046 |
[13] | 任福康, 陈宜, 王江江. 耦合太阳能和地热能的冷热联供系统优化[J]. 工程热物理学报, 2021, 42(1):16-24. |
REN Fukang, CHEN Yi, WANG Jiangjiang. Optimization of combined cooling, heating,and power system coupled with solar and geothermal energies[J]. Journal of Engineering Thermophysics, 2021, 42(1):16-24. | |
[14] | 高秀芝, 王沣浩, 戢坤池, 等. 热泵供暖技术发展现状及展望[J]. 制冷与空调, 2019, 19(5):71-78,83. |
GAO Xiuzhi, WANG Fenghao, JI Kunchi, et al. Development status and prospects of heat pump heating technology[J]. Refrigeration and Air Conditioning, 2019, 19(5):71-78,83. | |
[15] | 胡斌, 吴迪, 姜佳彤, 等. 水蒸气超高温热泵系统的实验研究[J]. 工程热物理学报, 2021, 42(4):833-840. |
HU Bin, WU Di, JIANG Jiatong, et al. Experimental study of a water vapor compression heat pump with very high temperature output[J]. Journal of Engineering Thermophysics, 2021, 42(4):833-840. | |
[16] | 孟静惟, 贾玮, 张慧文, 等. “太阳能光伏+”多场景应用助力应对气候变化[J]. 中华环境, 2021(S1):44-47. |
MENG Jingwei, JIA Wei, ZHANG Huiwen, et al. "Solar photovoltaic +"multi scenario application helps to cope with climate change[J]. China Environment, 2021(S1): 44-47. | |
[17] | 王冬, 张可佳, 张洋. 国内外BIPV相关标准的发展现状[J]. 太阳能, 2021(5):12-19. |
WANG Dong, ZHANG Kejia, ZHANG Yang. Development status of BIPV related standards at home and abroad[J]. Solar Energy, 2021(5):12-19. | |
[18] | 莫一波, 杨灵, 黄柳燕, 等. 各种太阳能发电技术研究综述[J]. 东方电气评论, 2018, 32(1):78-82. |
MO Yibo, YANG Ling, HUANG Liuyan, et al. Review of various solar power generation technologies[J]. Dongfang Electric Review, 2018, 32(1):78-82. | |
[19] |
张金平, 周强, 王定美, 等. 太阳能光热发电技术及其发展综述[J]. 综合智慧能源, 2023, 45(2):44-52.
doi: 10.3969/j.issn.2097-0706.2023.02.006 |
ZHANG Jinping, ZHOU Qiang, WANG Dingmei, et al. Review on solar thermal power generation technologies and their development[J]. Integrated Intelligent Energy, 2023, 45(2):44-52.
doi: 10.3969/j.issn.2097-0706.2023.02.006 |
|
[20] |
崔双双, 孙单勋. 分工况下风电机组各变量相关性研究[J]. 综合智慧能源, 2022, 44(12):49-55.
doi: 10.3969/j.issn.2097-0706.2022.12.007 |
CUI Shuangshuang, SUN Shanxun. Study on the correlation of wind turbine variables under different conditions[J]. Integrated Intelligent Energy, 2022, 44(12):49-55.
doi: 10.3969/j.issn.2097-0706.2022.12.007 |
|
[21] | 刘晓辉, 高人杰, 薛宇. 浮式风力发电机组现状及发展趋势综述[J]. 分布式能源, 2020, 5(3):39-46. |
LIU Xiaohui, GAO Renjie, XUE Yu. Current situation and future development trend of floating offshore wind turbine[J]. Distributed Energy, 2020, 5(3):39-46. | |
[22] | 许国东, 叶杭冶, 解鸿斌. 风电机组技术现状及发展方向[J]. 中国工程科学, 2018, 20(3):44-50. |
XU Guodong, YE Hangye, XIE Hongbin. The current state and future development of wind turbine technology[J]. Strategic Study of CAE, 2018, 20(3):44-50. | |
[23] | 王月普. 风力发电现状与发展趋势分析[J]. 电力设备管理, 2020(11):21-22. |
WANG Yuepu. Analysis of current situation and development trend of wind power generation[J]. Power Equipment Management, 2020(11):21-22. | |
[24] |
雷超, 李韬. 碳中和背景下氢能利用关键技术及发展现状[J]. 发电技术, 2021, 42(2):207-217.
doi: 10.12096/j.2096-4528.pgt.20015 |
LEI Chao, LI Tao. Key technologies and development status of hydrogen energy utilization under the background of carbon neutrality[J]. Power Generation Technology, 2021, 42(2):207-217.
doi: 10.12096/j.2096-4528.pgt.20015 |
|
[25] | SERNA A. Evaluation of a long term system coupled with a short term system of a hydrogen-based microgrid[C]//International Renewable Energy Congress(IREC),Amman,Jordan, 2017:1-6. |
[26] | 符冠云. 氢能在我国能源转型中的地位和作用[J]. 中国煤炭, 2019, 45(10):15-21. |
FU Guanyun. The status and role of hydrogen energy in china's energy transition[J]. China Coal, 2019, 45(10):15-21. | |
[27] | 肖陆飞, 哈云, 孟飞, 等. 生物质气化技术研究与应用进展[J]. 现代化工, 2020, 40(12):68-72,76. |
XIAO Lufei, HA Yun, MENG Fei, et al. Research and application progress on biomass gasification technologies[J]. Modern Chemical Industry, 2020, 40(12):68-72,76. | |
[28] |
SUN H, WU C. Autothermal CaO looping biomass gasification for renewable syngas production[J]. Environmental Science & Technology, 2019, 53(15):9298-9305.
doi: 10.1021/acs.est.9b01527 |
[29] |
刘健, 刘雨鑫, 庄涵羽. 虚拟电厂关键技术及其建设实践[J]. 综合智慧能源, 2023, 45(6):59-65.
doi: 10.3969/j.issn.2097-0706.2023.06.008 |
LIU Jian, LIU Yuxin, ZHUANG Hanyu. Key technologies and construction practices of virtual power plants[J]. Integrated Intelligent Energy, 2023, 45(6):59-65.
doi: 10.3969/j.issn.2097-0706.2023.06.008 |
|
[30] | 黄俊玮, 谭建成, 文泓铸. LCC-MMC型混合直流输电系统综述[J]. 电气开关, 2019, 57(5):1-5,10. |
HUANG Junwei, TAN Jiancheng, WEN Hongzhu. A review on LCC-MMC hybrid HVDC system[J]. Electric Switcher, 2019, 57(5):1-5,10. | |
[31] | 徐政, 王世佳, 李宁璨, 等. 适用于远距离大容量架空线路的LCC-MMC串联混合型直流输电系统[J]. 电网技术, 2016, 40(1):55-63. |
XU Zheng, WANG Shijia, LI Ningcan, et al. A LCC and MMC series hybrid HVDC topology suitable for bulk power overhead line transmission[J]. Power System Technology, 2016, 40(1):55-63. | |
[32] | 肖立业, 林良真. 超导输电技术发展现状与趋势[J]. 电工技术学报, 2015, 30(7):1-9. |
XIAO Liye, LIN Liangzhen. Status quo and trends of superconducting power transmission technology[J]. Transactions of China Electrotechnical Society, 2015, 30(7):1-9. | |
[33] | 曾竞, 韩杰, 张国强, 等. 区域供冷(热)管网优化技术及研究进展[J]. 煤气与热力, 2014, 34(12):22-26. |
ZENG Jing, HAN Jie, ZHANG Guoqiang, et al. Optimization technologies and research progress of district cooling and heating networks[J]. Gas & Heat, 2014, 34(12):22-26. | |
[34] | 李建林, 李光辉, 马速良, 等. 氢能储运技术现状及其在电力系统中的典型应用[J]. 现代电力, 2021, 38(5):535-545. |
LI Jianlin, LI Guanghui, MA Suliang, et al. An overview on hydrogen energy storage and transportation technology and its typical application in power system[J]. Modern Electric Power, 2021, 38(5):535-545. | |
[35] | 李敬法, 苏越, 张衡, 等. 掺氢天然气管道输送研究进展[J]. 天然气工业, 2021, 41(4):137-152. |
LI Jingfa, SU Yue, ZHANG Heng, et al. Research progresses on pipeline transportation of hydrogen-blended natural gas[J]. Natural Gas Industry, 2021, 41(4):137-152. | |
[36] |
陈晓露, 刘小敏, 王娟, 等. 液氢储运技术及标准化[J]. 化工进展, 2021, 40(9):4806-4814.
doi: 10.16085/j.issn.1000-6613.2021-0162 |
CHEN Xiaolu, LIU Xiaomin, WANG Juan, et al. Technology and standardization of liquid hydrogen storage and transportation[J]. Chemical Industry and Engineering Progress, 2021, 40(9):4806-4814.
doi: 10.16085/j.issn.1000-6613.2021-0162 |
|
[37] | 缪平, 姚祯, LEMMON J, 等. 电池储能技术研究进展及展望[J]. 储能科学与技术, 2020, 9(3):670-678. |
MIAO Ping, YAO Zhen, LEMMON J, et al. Current situations and prospects of energy storage batteries[J]. Energy Storage Science and Technology, 2020, 9(3):670-678. | |
[38] | 姜竹, 邹博杨, 丛琳, 等. 储热技术研究进展与展望[J]. 储能科学与技术, 2022, 11(9):2746-2771. |
JIANG Zhu, ZOU Boyang, CONG Lin, et al. Research progress and prospects of thermal energy storage technology[J]. Energy Storage Science and Technology, 2022, 11(9):2746-2771. | |
[39] |
FURAT D, MARTIN A, SHAFIULLAH G. Hydrogen production for energy:An overview[J]. International Journal of Hydrogen Energy, 2020, 45(7):3847-3869.
doi: 10.1016/j.ijhydene.2019.12.059 |
[40] | 张新开. 长三角地区办公建筑零能耗技术策略的全生命周期经济性研究[D]. 南京: 东南大学, 2019. |
ZHANG Xinkai. Life cycle economic study on zero energy consumption technology strategies for office buildings in the yangtze river delta region[D]. Nanjing: Southeast University, 2019. | |
[41] |
薛溟枫, 毛晓波, 肖浩, 等. 基于改进深度Q网络算法的多园区综合能源系统能量管理方法[J]. 电力建设, 2022, 43(12):83-93.
doi: 10.12204/j.issn.1000-7229.2022.12.009 |
XUE Mingfeng, MAO Xiaobo, XIAO Hao, et al. Energy management method for multi-park integrated energy systems based on improved deep qnetwork algorithm[J]. Electric Power Construction, 2022, 43(12):83-93.
doi: 10.12204/j.issn.1000-7229.2022.12.009 |
|
[42] |
陈以明, 李治. 智慧能源发展方向及趋势分析[J]. 动力工程学报, 2020, 40(10):852-858,864.
doi: 10.19805/j.cnki.jcspe.2020.10.012 |
CHEN Yiming, LI Zhi. Analysis on the development trend and features of smart energy sources[J]. Journal of Chinese Society of Power Engineering, 2020, 40(10):852-858,864.
doi: 10.19805/j.cnki.jcspe.2020.10.012 |
|
[43] | 张政林, 张惠娟, 孙文治, 等. 基于改进旗鱼算法的综合能源系统能量管理[J]. 电力系统保护与控制, 2022, 50(22):142-151. |
ZHANG Zhenglin, ZHANG Huijuan, SUN Wenzhi, et al. Energy management of integrated energy systems based on improved sailfish algorithm[J]. Power System Protection and Control, 2022, 50(22),142-151. | |
[44] | 魏彤. “十四五”时期能源综合利用与智慧化转型探析[J]. 中国工程咨询, 2020(9):57-61. |
WEI Tong. Analysis of energy comprehensive utilization and intelligent transformation during the 14th five year plan period[J]. Chinese Engineering Consultants, 2020(9):57-61. | |
[45] | 陈烈. 低碳发展视角下的大型现代园区智慧化建设研究[J]. 建筑科技, 2020, 4(6):33-36. |
CHEN Lie. Smart huge industry park development by from low-carbon perspective[J]. Build Technology, 2020, 4(6):33-36. | |
[46] | 黄清. 发展智慧能源是顺应能源大势之道[J]. 中国能源, 2018, 40(12):14-16. |
HUANG Qing. Developing smart energy is the way to adapt to the energy trend[J]. Energy of China, 2018, 40(12):14-16. | |
[47] |
王宇波, 全贞花, 靖赫然, 等. 多能互补协同蓄能系统热力学分析与运行优化[J]. 化工学报, 2021, 72(5):2474-2483,2906.
doi: 10.11949/0438-1157.20201112 |
WANG Yubo, QUAN Zhenhua, JING Heran, et al. Thermodynamic analysis and operational optimization of multi-energy complementary cooperative energy storage systems[J]. Journal of Chemical Engineering, 2021, 72(5):2474-2483,2906. | |
[48] |
GUO L, LIU W, CAI J, et al. A two-stage optimal planning and design method for combined cooling, heat and power microgrid system[J]. Energy Conversion and Management, 2013, 74:433-445.
doi: 10.1016/j.enconman.2013.06.051 |
[49] |
BARATI F, SEIFI H, SEPASIAN M S, et al. Multi-period integrated framework of generation,transmission,and natural gas grid expansion planning for large-scale systems[J]. IEEE Transactions on Power Systems, 2015, 30(5):2527-2537.
doi: 10.1109/TPWRS.2014.2365705 |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | LIU Tao, LI Weihua, TANG Yi. Security protection of typical networks for integrated smart energy systems [J]. Integrated Intelligent Energy, 2024, 46(5): 81-90. |
[3] | WAN Mingzhong, WANG Yuanyuan, LI Jun, LU Yuanwei, ZHAO Tian, WU Yuting. Research progress and prospect of compressed air energy storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. |
[4] | XUE Fu, MA Xiaoming, YOU Yanjun. Energy storage technologies and their applications and development [J]. Integrated Intelligent Energy, 2023, 45(9): 48-58. |
[5] | LIU Tianyang, GAO Yajing, XIE Dian, ZHAO Liang. Analysis on the construction path of functional zero-carbon parks [J]. Integrated Intelligent Energy, 2023, 45(8): 44-52. |
[6] | HU Kaiyong, LIU Feng, WU Xiujie, HU Yunqing, ZHENG Yi, TIAN Shen. Carbon-economy analysis on energy supply methods for rural buildings based on Trnsys energy consumption prediction [J]. Integrated Intelligent Energy, 2023, 45(8): 64-71. |
[7] | WANG Yongzhen, HAN Yibo, HAN Kai, HAN Juntao, SONG Kuo, ZHANG Lanlan. Researches on data center integrated energy systems based on knowledge graph [J]. Integrated Intelligent Energy, 2023, 45(7): 1-10. |
[8] | LI Yizhe, WANG Dan, JIA Hongjie, ZHOU Tianshuo, CAO Yitao, ZHANG Shuai, LIU Jiawei. Diverse modeling methods for energy hubs in integrated energy systems and their typical applications [J]. Integrated Intelligent Energy, 2023, 45(7): 22-29. |
[9] | LIU Jian, LIU Yuxin, ZHUANG Hanyu. Key technologies and construction practices of virtual power plants [J]. Integrated Intelligent Energy, 2023, 45(6): 59-65. |
[10] | ZHAO Guotao, QIAN Guoming, SUN Yanbing, DING Quan, ZHU Haidong. Application of carbon-escape accounting system in integrated energy systems' low-carbon evaluation [J]. Integrated Intelligent Energy, 2023, 45(6): 73-80. |
[11] | LIU Ziqi, SU Tingting, HE Jiayang, WANG Yu. Research on the optimal allocation of energy storage in distribution network based on multi-objective particle swarm optimization algorithm [J]. Integrated Intelligent Energy, 2023, 45(6): 9-16. |
[12] | ZHOU Shuxin, FAN Huailin, HU Xun. Preparation of biomass-based carbon materials and its application as electrodes in supercapacitors [J]. Integrated Intelligent Energy, 2023, 45(5): 1-12. |
[13] | FAN Dekai, FU Jie, LIU Yang, ZHOU Chunbao, DAI Jianjun. Review on the preparation of high-value chemicals from cellulose pyrolysis [J]. Integrated Intelligent Energy, 2023, 45(5): 24-31. |
[14] | LI Minxia, HOU Beiran, WANG Pai, DONG Liwei, TIAN Hua. Application and development of CO2 transcritical cycle heat pumps [J]. Integrated Intelligent Energy, 2023, 45(4): 12-18. |
[15] | WANG Yunyun, MA Zhicheng, ZHOU Qiang, DONG Haiying. Robust optimal scheduling of multi-energy cooperative game considering fairness [J]. Integrated Intelligent Energy, 2023, 45(2): 10-21. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||